Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nat Biomed Eng ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589466

RESUMEN

The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.

2.
Invest Radiol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598653

RESUMEN

OBJECTIVES: Chronic liver diseases (CLDs) have diverse etiologies. To better classify CLDs, we explored the ability of longitudinal multiparametric MRI (magnetic resonance imaging) in depicting alterations in liver morphology, inflammation, and hepatocyte and macrophage activity in murine high-fat diet (HFD)- and carbon tetrachloride (CCl4)-induced CLD models. MATERIALS AND METHODS: Mice were either untreated, fed an HFD for 24 weeks, or injected with CCl4 for 8 weeks. Longitudinal multiparametric MRI was performed every 4 weeks using a 7 T MRI scanner, including T1/T2 relaxometry, morphological T1/T2-weighted imaging, and fat-selective imaging. Diffusion-weighted imaging was applied to assess fibrotic remodeling and T1-weighted and T2*-weighted dynamic contrast-enhanced MRI and dynamic susceptibility contrast MRI using gadoxetic acid and ferucarbotran to target hepatocytes and the mononuclear phagocyte system, respectively. Imaging data were associated with histopathological and serological analyses. Principal component analysis and clustering were used to reveal underlying disease patterns. RESULTS: The MRI parameters significantly correlated with histologically confirmed steatosis, fibrosis, and liver damage, with varying importance. No single MRI parameter exclusively correlated with 1 pathophysiological feature, underscoring the necessity for using parameter patterns. Clustering revealed early-stage, model-specific patterns. Although the HFD model exhibited pronounced liver fat content and fibrosis, the CCl4 model indicated reduced liver fat content and impaired hepatocyte and macrophage function. In both models, MRI biomarkers of inflammation were elevated. CONCLUSIONS: Multiparametric MRI patterns can be assigned to pathophysiological processes and used for murine CLD classification and progression tracking. These MRI biomarker patterns can directly be explored clinically to improve early CLD detection and differentiation and to refine treatments.

3.
Med Phys ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214395

RESUMEN

BACKGROUND: Preclinical research and organ-dedicated applications use and require high (spatial-)resolution positron emission tomography (PET) detectors to visualize small structures (early) and understand biological processes at a finer level of detail. Researchers seeking to improve detector and image spatial resolution have explored various detector designs. Current commercial high-resolution systems often employ finely pixelated or monolithic scintillators, each with its limitations. PURPOSE: We present a semi-monolithic detector, tailored for high-resolution PET applications with a spatial resolution in the range of 1 mm or better, merging concepts of monolithic and pixelated crystals. The detector features LYSO slabs measuring (24 × 10 × 1) mm3 , coupled to a 12 × 12 readout channel photosensor with 4 mm pitch. The slabs are grouped in two arrays of 44 slabs each to achieve a higher optical photon density despite the fine segmentation. METHODS: We employ a fan beam collimator for fast calibration to train machine-learning-based positioning models for all three dimensions, including slab identification and depth-of-interaction (DOI), utilizing gradient tree boosting (GTB). The data for all dimensions was acquired in less than 2 h. Energy calculation was based on a position-dependent energy calibration. Using an analytical timing calibration, time skews were corrected for coincidence timing resolution (CTR) estimation. RESULTS: Leveraging machine-learning-based calibration in all three dimensions, we achieved high detector spatial resolution: down to 1.18 mm full width at half maximum (FWHM) detector spatial resolution and 0.75 mm mean absolute error (MAE) in the planar-monolithic direction, and 2.14 mm FWHM and 1.03 mm MAE for DOI at an energy window of (435-585) keV. Correct slab interaction identification in planar-segmented direction exceeded 80%, alongside an energy resolution of 12.7% and a CTR of 450 ps FWHM. CONCLUSIONS: The introduced finely segmented, high-resolution slab detector demonstrates appealing performance characteristics suitable for high-resolution PET applications. The current benchtop-based detector calibration routine allows these detectors to be used in PET systems.

4.
EJNMMI Phys ; 10(1): 76, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044383

RESUMEN

BACKGROUND: Over the past five years, ultrafast high-frequency (HF) readout concepts have advanced the timing performance of silicon photomultipliers (SiPMs). The shown impact in time-of-flight (TOF) techniques can further push the limits in light detection and ranging (LiDAR), time-of-flight positron-emission tomography (TOF-PET), time-of-flight computed tomography (TOF-CT) or high-energy physics (HEP). However, upscaling these electronics to a system-applicable, multi-channel readout, has remained a challenging task, posed by the use of discrete components and a high power consumption. To this day, there are no means to exploit the high TOF resolution of these electronics on system scale or to measure the actual timing performance limits of a full detector block. METHODS: In this work, we present a 16-channel HF readout board, including leading-edge discrimination and a linearized time-over-threshold (TOT) method, which is fully compatible with a high-precision time-to-digital converters (TDCs), such as the picoTDC developed at CERN. The discrete implementation allows ideal adaptation of this readout to a broad range of detection tasks. As a first step, the functionality of the circuit has been tested using the TOFPET2 ASIC as back-end electronics to emulate the TDC, also in view of its properties as a highly scalable data acquisition solution. RESULTS: The produced board is able to mitigate influences of baseline shifts in the TOFPET2 front end, which has been shown in experiments with a pulsed laser, increasing the achievable intrinsic coincidence timing resolution (CTR) of the TOFPET2 readout electronics from 70 ps (FWHM) to 62 ps (FWHM). Single-channel coincidence experiments including a [Formula: see text]-source, 2[Formula: see text]2[Formula: see text]3 mm[Formula: see text] LYSO:Ce,Ca crystals and Broadcom NUV-MT SiPMs resulted in a CTR of 118 ps (FWHM). For a 4[Formula: see text]4 matrix of 3.88[Formula: see text]3.88[Formula: see text]19 mm[Formula: see text] LYSO:Ce,Ca crystals one-to-one coupled to a 4[Formula: see text]4 array of Broadcom NUV-MT SiPMs, an average CTR of 223 ps (FWHM) was obtained. CONCLUSION: The implemented 16-channel HF electronics are fully functionall and have a negligible influence on the timing performance of the back-end electronics used, here the TOFPET2 ASIC. The ongoing integration of the picoTDC with the 16-channel HF board is expected to further set the path toward sub-100 ps TOF-PET and sub-30ps TOF resolution for single-photon detection.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37862278

RESUMEN

Artificial intelligence (AI) is entering medical imaging, mainly enhancing image reconstruction. Nevertheless, improvements throughout the entire processing, from signal detection to computation, potentially offer significant benefits. This work presents a novel and versatile approach to detector optimization using machine learning (ML) and residual physics. We apply the concept to positron emission tomography (PET), intending to improve the coincidence time resolution (CTR). PET visualizes metabolic processes in the body by detecting photons with scintillation detectors. Improved CTR performance offers the advantage of reducing radioactive dose exposure for patients. Modern PET detectors with sophisticated concepts and read-out topologies represent complex physical and electronic systems requiring dedicated calibration techniques. Traditional methods primarily depend on analytical formulations successfully describing the main detector characteristics. However, when accounting for higher-order effects, additional complexities arise matching theoretical models to experimental reality. Our work addresses this challenge by combining traditional calibration with AI and residual physics, presenting a highly promising approach. We present a residual physics-based strategy using gradient tree boosting and physics-guided data generation. The explainable AI framework SHapley Additive exPlanations (SHAPs) was used to identify known physical effects with learned patterns. In addition, the models were tested against basic physical laws. We were able to improve the CTR significantly (more than 20%) for clinically relevant detectors of 19 mm height, reaching CTRs of 185 ps (450-550 keV).

6.
Phys Med Biol ; 68(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37863101

RESUMEN

Objective.Prompt-gamma imaging encompasses several approaches to the online monitoring of the beam range or deposited dose distribution in proton therapy. We test one of the imaging techniques - a coded mask approach - both experimentally and via simulations.Approach.Two imaging setups have been investigated experimentally. Each of them comprised a structured tungsten collimator in the form of a modified uniformly redundant array mask and a LYSO:Ce scintillation detector of fine granularity. The setups differed in detector dimensions and operation mode (1D or 2D imaging). A series of measurements with radioactive sources have been conducted, testing the performance of the setups for near-field gamma imaging. Additionally, Monte Carlo simulations of a larger setup of the same type were conducted, investigating its performance with a realistic gamma source distribution occurring during proton therapy.Main results.The images of point-like sources reconstructed from two small-scale prototypes' data using the maximum-likelihood expectation maximisation algorithm constitute the experimental proof of principle for the near-field coded-mask imaging modality, both in the 1D and the 2D mode. Their precision allowed us to calibrate out certain systematic offsets appearing due to the limited alignment accuracy of setup elements. The simulation of the full-scale setup yielded a mean distal falloff retrieval precision of 0.72 mm in the studies for beam energy range 89.5-107.9 MeV and with 1 × 108protons (a typical number for distal spots). The implemented algorithm of image reconstruction is relatively fast-a typical procedure needs several seconds.Significance.Coded-mask imaging appears a valid option for proton therapy monitoring. The results of simulations let us conclude that the proposed full-scale setup is competitive with the knife-edge-shaped and the multi-parallel slit cameras investigated by other groups.


Asunto(s)
Terapia de Protones , Terapia de Protones/métodos , Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Protones , Fantasmas de Imagen , Método de Montecarlo
7.
Nuklearmedizin ; 62(5): 314-322, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37802059

RESUMEN

BACKGROUND: Therapeutics that specifically address biological processes often require a much finer selection of patients and subclassification of diseases. Thus, diagnostic procedures must describe the diseases in sufficient detail to allow selection of appropriate therapy and to sensitively track therapy response. Anatomical features are often not sufficient for this purpose and there is a need to image molecular and pathophysiological processes. METHOD: Two imaging strategies can be pursued: molecular imaging attempts to image a few biomarkers that play key roles in pathological processes. Alternatively, patterns describing a biological process can be identified from the synopsis of multiple (non-specific) imaging markers, possibly in combination with omics and other clinical findings. Here, AI-based methods are increasingly being used. RESULTS: Both strategies of evidence-based therapy management are explained in this review article and examples and clinical successes are presented. In this context, reviews of clinically approved molecular diagnostics and decision support systems are listed. Furthermore, since reliable, representative, and sufficiently large datasets are further important prerequisites for AI-assisted multiparametric analyses, concepts are presented to make data available in a structured way, e. g., using Generative Adversarial Networks to complement databases with virtual cases and to build completely anonymous reference databases. CONCLUSION: Molecular imaging and computer-assisted cluster analysis of diagnostic data are complementary methods to describe pathophysiological processes. Both methods have the potential to improve (evidence-based) the future management of therapies, partly on their own but also in combined approaches. KEY POINTS: · Molecular imaging and radiomics provide valuable complementary disease biomarkers.. · Data-driven, model-based, and hybrid model-based integrated diagnostics advance precision medicine.. · Synthetic data generation may become essential in the development process of future AI methods..


Asunto(s)
Medicina de Precisión , Humanos , Biomarcadores
8.
EJNMMI Phys ; 10(1): 43, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450099

RESUMEN

BACKGROUND: Positron emission tomography (PET) requires a high signal-to-noise ratio (SNR) to improve image quality, with time-of-flight (TOF) being an effective way to boost the SNR. However, the scanner sensitivity and resolution must be maintained. The use of axially aligned 100-mm LYSO:Ce,Ca scintillation crystals with double-sided readout has the potential of ground-breaking TOF and sensitivity, while reducing parallax errors through depth-of-interaction (DOI) estimation, and also allowing a reduction in the number of readout channels required, resulting in cost benefits. Due to orientation, these fibres may also facilitate the integration of TOF-PET with magnetic resonance imaging (MRI) in hybrid imaging systems. The challenge of achieving a good spatial resolution with such long axial fibres is directly related to the achievable TOF resolution. In this study, the timing performance and DOI resolution of emerging high-performance materials were investigated to assess the merits of this approach in organ-dedicated or total-body/large-scale PET imaging systems. METHODS: LYSO:Ce,Ca scintillation fibres of 20 mm and 100 mm length were tested in various operating and readout configurations to determine the best achievable coincidence time resolution (CTR) and DOI resolution. The tests were performed using state-of-the-art high-frequency (HF) readout and commercially available silicon photomultipliers (SiPMs) from Broadcom Inc. RESULTS: For the 100-mm fibre, an average CTR performance of [Formula: see text] ps FWHM and an average depth-of-interaction resolution within the fibre of [Formula: see text] mm FWHM could be obtained. The 20-mm fibre showed a sub-100 ps CTR of [Formula: see text] ps FWHM and a fibre resolution of [Formula: see text] mm FWHM in the double-sided readout configuration. CONCLUSION: With modern SiPMs and crystals, a double-sided readout of long fibres can achieve excellent timing resolution and field-advancing TOF resolution, outperforming commercial PET systems. With 100-mm fibres, an electronic channel reduction of about a factor 2.5 is inherent, with larger reduction factors conceivable, which can lead to lower production costs. The spatial resolution was shown to be limited in the axial direction with 12 mm, but is defined to 3 mm in all other directions. Recent SiPM and scintillator developments are expected to improve on the time and spatial resolution to be investigated in future prototypes.

9.
Phys Med Biol ; 68(16)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467766

RESUMEN

Objective.Recent SiPM developments and improved front-end electronics have opened new doors in TOF-PET with a focus on prompt photon detection. For instance, the relatively high Cherenkov yield of bismuth-germanate (BGO) upon 511 keV gamma interaction has triggered a lot of interest, especially for its use in total body positron emission tomography (PET) scanners due to the crystal's relatively low material and production costs. However, the electronic readout and timing optimization of the SiPMs still poses many questions. Lab experiments have shown the prospect of Cherenkov detection, with coincidence time resolutions (CTRs) of 200 ps FWHM achieved with small pixels, but lack system integration due to an unacceptable high power uptake of the used amplifiers.Approach.Following recent studies the most practical circuits with lower power uptake (<30 mW) have been implemented and the CTR performance with BGO of newly developed SiPMs from Fondazione Bruno Kessler tested. These novel SiPMs are optimized for highest single photon time resolution (SPTR).Main results.We achieved a best CTR FWHM of 123 ps for 2 × 2 × 3 mm3and 243 ps for 3 × 3 × 20 mm3BGO crystals. We further show that with these devices a CTR of 106 ps is possible using commercially available 3 × 3 × 20 mm3LYSO:Ce,Mg crystals. To give an insight in the timing properties of these SiPMs, we measured the SPTR with black coated PbF2of 2 × 2 × 3 mm3size. We confirmed an SPTR of 68 ps FWHM published in literature for standard devices and show that the optimized SiPMs can improve this value to 42 ps. Pushing the SiPM bias and using 1 × 1 mm2area devices we measured an SPTR of 28 ps FWHM.Significance.We have shown that advancements in readout electronics and SiPMs can lead to improved CTR with Cherenkov emitting crystals. Enabling time-of-flight with BGO will trigger a high interest for its use in low-cost and total-body PET scanners. Furthermore, owing to the prompt nature of Cherenkov emission, future CTR improvements are conceivable, for which a low-power electronic implementation is indispensable. In an extended discussion we will give a roadmap to best timing with prompt photons.


Asunto(s)
Fotones , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Tiempo , Electrónica , Amplificadores Electrónicos , Conteo por Cintilación
10.
Radiology ; 307(3): e222211, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943080

RESUMEN

Background Reducing the amount of contrast agent needed for contrast-enhanced breast MRI is desirable. Purpose To investigate if generative adversarial networks (GANs) can recover contrast-enhanced breast MRI scans from unenhanced images and virtual low-contrast-enhanced images. Materials and Methods In this retrospective study of breast MRI performed from January 2010 to December 2019, simulated low-contrast images were produced by adding virtual noise to the existing contrast-enhanced images. GANs were then trained to recover the contrast-enhanced images from the simulated low-contrast images (approach A) or from the unenhanced T1- and T2-weighted images (approach B). Two experienced radiologists were tasked with distinguishing between real and synthesized contrast-enhanced images using both approaches. Image appearance and conspicuity of enhancing lesions on the real versus synthesized contrast-enhanced images were independently compared and rated on a five-point Likert scale. P values were calculated by using bootstrapping. Results A total of 9751 breast MRI examinations from 5086 patients (mean age, 56 years ± 10 [SD]) were included. Readers who were blinded to the nature of the images could not distinguish real from synthetic contrast-enhanced images (average accuracy of differentiation: approach A, 52 of 100; approach B, 61 of 100). The test set included images with and without enhancing lesions (29 enhancing masses and 21 nonmass enhancement; 50 total). When readers who were not blinded compared the appearance of the real versus synthetic contrast-enhanced images side by side, approach A image ratings were significantly higher than those of approach B (mean rating, 4.6 ± 0.1 vs 3.0 ± 0.2; P < .001), with the noninferiority margin met by synthetic images from approach A (P < .001) but not B (P > .99). Conclusion Generative adversarial networks may be useful to enable breast MRI with reduced contrast agent dose. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl in this issue.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Mama , Aprendizaje Automático
11.
Phys Med Biol ; 68(7)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36808914

RESUMEN

Objective.Together with novel photodetector technologies and emerging electronic front-end designs, scintillator material research is one of the key aspects to obtain ultra-fast timing in time-of-flight positron emission tomography (TOF-PET). In the late 1990s, Cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) has been established as the state-of-the-art PET scintillator due to its fast decay time, high light yield and high stopping power. It has been shown that co-doping with divalent ions, such as Ca2+and Mg2+, is beneficial for its scintillation characteristics and timing performance. Therefore, this work aims to identify a fast scintillation material to combine it with novel photosensor technologies to push the state of the art in TOF-PET.Approach.This study evaluates commercially available LYSO:Ce,Ca and LYSO:Ce,Mg samples manufactured by Taiwan Applied Crystal Co., LTD regarding their rise and decay times as well as their coincidence time resolution (CTR) with both ultra-fast high-frequency (HF) readout and commercially available readout electronics, i.e. the TOFPET2 ASIC.Main results.The co-doped samples exhibit state-of-the-art rise times of on average 60 ps and effective decay times of on average 35 ns. Using the latest technological improvements made on NUV-MT SiPMs by Fondazione Bruno Kessler and Broadcom Inc., a 3 × 3 × 19 mm3LYSO:Ce,Ca crystal achieves a CTR of 95 ps (FWHM) with ultra-fast HF readout and 157 ps (FWHM) with the system-applicable TOFPET2 ASIC. Evaluating the timing limits of the scintillation material, we even show a CTR of 56 ps (FWHM) for small 2 × 2 × 3 mm3pixels. A complete overview of the timing performance obtained with different coatings (Teflon, BaSO4) and different crystal sizes coupled to standard Broadcom AFBR-S4N33C013 SiPMs will be presented and discussed.Significance.This work thoroughly evaluates commercially available co-doped LYSO:Ce crystals and, in combination with novel NUV-MT SiPMs, shows a TOF performance that significantly exceeds the current state of the art.


Asunto(s)
Tomografía de Emisión de Positrones , Conteo por Cintilación , Fotones , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos , Silicatos/química
12.
Phys Med Biol ; 68(2)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36595338

RESUMEN

Objective.Positron emission tomography (PET) detectors providing attractive coincidence time resolutions (CTRs) offer time-of-flight information, resulting in an improved signal-to-noise ratio of the PET image. In applications with photosensor arrays that employ timestampers for individual channels, timestamps typically are not time synchronized, introducing time skews due to different signal pathways. The scintillator topology and transportation of the scintillation light might provoke further skews. If not accounted for these effects, the achievable CTR deteriorates. We studied a convex timing calibration based on a matrix equation. In this work, we extended the calibration concept to arbitrary structures targeting different aspects of the time skews and focusing on optimizing the CTR performance for detector characterization. The radiation source distribution, the stability of the estimations, and the energy dependence of calibration data are subject to the analysis.Approach.A coincidence setup, equipped with a semi-monolithic detector comprising 8 LYSO slabs, each 3.9 mm × 31.9 mm × 19.0 mm, and a one-to-one coupled detector with 8 × 8 LYSO segments of 3.9 mm × 3.9 mm × 19.0 mm volume is used. Both scintillators utilize a dSiPM (DPC3200-22-44, Philips Digital Photon Counting) operated in first photon trigger. The calibration was also conducted with solely one-to-one coupled detectors and extrapolated for a slab-only setup.Main results.All analyzed hyperparameters show a strong influence on the calibration. Using multiple radiation positions improved the skew estimation. The statistical significance of the calibration dataset and the utilized energy window was of great importance. Compared to a one-to-one coupled detector pair achieving CTRs of 224 ps the slab detector configuration reached CTRs down to 222 ps, demonstrating that slabs can compete with a clinically used segmented detector design.Significance.This is the first work that systematically studies the influence of hyperparameters on skew estimation and proposes an extension to arbitrary calibration structures (e.g. scintillator volumes) of a known calibration technique.


Asunto(s)
Fotones , Tomografía de Emisión de Positrones , Calibración , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/métodos
13.
Radiology ; 307(1): e220510, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36472534

RESUMEN

Background Supine chest radiography for bedridden patients in intensive care units (ICUs) is one of the most frequently ordered imaging studies worldwide. Purpose To evaluate the diagnostic performance of a neural network-based model that is trained on structured semiquantitative radiologic reports of bedside chest radiographs. Materials and Methods For this retrospective single-center study, children and adults in the ICU of a university hospital who had been imaged using bedside chest radiography from January 2009 to December 2020 were reported by using a structured and itemized template. Ninety-eight radiologists rated the radiographs semiquantitatively for the severity of disease patterns. These data were used to train a neural network to identify cardiomegaly, pulmonary congestion, pleural effusion, pulmonary opacities, and atelectasis. A held-out internal test set (100 radiographs from 100 patients) that was assessed independently by an expert panel of six radiologists provided the ground truth. Individual assessments by each of these six radiologists, by two nonradiologist physicians in the ICU, and by the neural network were compared with the ground truth. Separately, the nonradiologist physicians assessed the images without and with preliminary readings provided by the neural network. The weighted Cohen κ coefficient was used to measure agreement between the readers and the ground truth. Results A total of 193 566 radiographs in 45 016 patients (mean age, 66 years ± 16 [SD]; 61% men) were included and divided into training (n = 122 294; 64%), validation (n = 31 243; 16%), and test (n = 40 029; 20%) sets. The neural network exhibited higher agreement with a majority vote of the expert panel (κ = 0.86) than each individual radiologist compared with the majority vote of the expert panel (κ = 0.81 to ≤0.84). When the neural network provided preliminary readings, the reports of the nonradiologist physicians improved considerably (aided vs unaided, κ = 0.87 vs 0.79, respectively; P < .001). Conclusion A neural network trained with structured semiquantitative bedside chest radiography reports allowed nonradiologist physicians improved interpretations compared with the consensus reading of expert radiologists. © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Wielpütz in this issue.


Asunto(s)
Inteligencia Artificial , Radiografía Torácica , Masculino , Adulto , Niño , Humanos , Anciano , Femenino , Estudios Retrospectivos , Radiografía Torácica/métodos , Pulmón , Radiografía
14.
Sci Rep ; 12(1): 21628, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517489

RESUMEN

COVID-19 poses a significant burden to populations worldwide. Although the pandemic has accelerated digital transformation, little is known about the influence of digitalization on pandemic developments. Therefore, this country-level study aims to explore the impact of pre-pandemic digital adoption on COVID-19 outcomes and government measures. Using the Digital Adoption Index (DAI), we examined the association between countries' digital preparedness levels and COVID-19 cases, deaths, and stringency indices (SI) of government measures until March 2021. Gradient Tree Boosting based algorithm pinpointed essential features related to COVID-19 trends, such as digital adoption, populations' smoker fraction, age, and poverty. Subsequently, regression analyses indicated that higher DAI was associated with significant declines in new cases (ß = - 362.25/pm; p < 0.001) and attributed deaths (ß = - 5.53/pm; p < 0.001) months after the peak. When plotting DAI against the SI normalized for the starting day, countries with higher DAI adopted slightly more stringent government measures (ß = 4.86; p < 0.01). Finally, a scoping review identified 70 publications providing valuable arguments for our findings. Countries with higher DAI before the pandemic show a positive trend in handling the pandemic and facilitate the implementation of more decisive governmental measures. Further distribution of digital adoption may have the potential to attenuate the impact of COVID-19 cases and deaths.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , Gobierno , Pandemias/prevención & control , SARS-CoV-2
15.
Eur J Radiol Open ; 9: 100453, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36411785

RESUMEN

Purpose: Application of MRF to evaluate the feasibility of 2D Dixon blurring-corrected MRF (2DDb-cMRF) to differentiate breast cancer (BC) from normal fibroglandular tissue (FGT). Methods: Prospective study on 14 patients with unilateral BC on 1.5 T system/axial T2w-TSE sequence, 2DDb-cMRF, B1 map, dynamic contrast-enhanced (DCE) T1-w GE-series. Mean T1 and T2 values and standard deviations were computed in the BC-/FGT-ROI on pre-/post-contrast MRF-maps and their differences were tested by two-tailed student t-test.Accuracy and repeatability of MRF were evaluated in a phantom experiment with gelatin with Primovist surrounded by fat.The T1 reduction between pre-/post-contrast MRF-maps was correlated to DCE signal enhancement in the last image post-contrast through the Pearson´s correlation coefficient (r) and for the phantom validation experiment through the Lin's concordance correlation coefficient (CCC).Visual evaluation of cancers on MRF-Maps was performed by rating each MRF-Map by 3 radiologists. Results: T1- and T2-MRF values of BC vs. FGT were for T1 and T2 pre-contrast respectively: 1147 ± 1 ms vs. 1052 ± 9 ms (p = 0.007) and 83 ± 1 ms vs. 73 ± 1 ms (p = 0.03); post-contrast respectively: 367.3 ± 121.5 ms vs. 690.3 ± 200.3 ms (p = 0.0005) and 76.9 ± 11.5 ms vs. 69.8 ± 15.2 ms (p = 0.12). r was positive (FGT r = 0.7; BC r = 0.6). CCC was 0.999 for T1 and 0.994 for T2. In the T1- and T2-MRF-Maps before contrast respectively (7,7,8)/14 and (5,9,8)/14 cancers were visible to the readers; afterwards, (11,12,12)/14 and (5,6,11)/14. Conclusions: MRF is promising for distinction between BC and FGT as well as for analyzing pre-/post-contrast T1 changes. However, its potential for differential diagnosis warrants further studies.

16.
J Nucl Med ; 63(12): 1802-1808, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36302654

RESUMEN

Nanoparticles possess unique features that may be useful for disease diagnosis and therapy. Preclinically, many different nanodiagnostics have been explored, but only a few have made it to the market. We here provide an overview of nanoparticle-based imaging agents currently used and evaluated in the clinic and discuss preclinical progress and translational avenues for the use of nanoparticles for diagnostic and theranostic applications.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Nanopartículas/uso terapéutico , Neoplasias/terapia , Medicina de Precisión/métodos , Nanomedicina Teranóstica/métodos
17.
Med Phys ; 49(12): 7469-7488, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36259245

RESUMEN

BACKGROUND: Current clinical positron emission tomography (PET) systems utilize detectors where the scintillator typically contains single elements of 3-6-mm width and about 20-mm height. While providing good time-of-flight performance, this design limits the spatial resolution and causes radial astigmatism as the depth-of-interaction (DOI) remains unknown. PURPOSE: We propose an alternative, aiming to combine the advantages of current detectors with the DOI capabilities shown for monolithic concepts, based on semi-monolithic scintillators (slabs). Here, the optical photons spread along one dimension enabling DOI-encoding with a still small readout area beneficial for timing performance. METHODS: An array of eight monolithic LYSO slabs of dimensions 3.9 × 32 × 19 mm3 was read out by a 64-channel photosensor containing digital SiPMs (DPC3200-22-44, Philips Digital Photon Counting). The position estimation in the detector's monolithic and DOI direction was based on a calibration with a fan beam collimator and the machine learning technique gradient tree boosting (GTB). RESULTS: We achieved a positioning performance in terms of mean absolute error (MAE) of 1.44 mm for the monolithic direction and 2.12 mm for DOI considering a wide energy window of 300-700 keV. The energy resolution was determined to be 11.3%, applying a positional-dependent energy calibration. We established both an analytical and machine-learning-based timing calibration approach and applied them for a first-photon trigger. The analytical timing calibration corrects for electronic and optical time skews leading to 240 ps coincidence resolving time (CRT) for a pair of slab-detectors. The CRT was significantly improved by utilizing GTB to predict the time difference based on specific training data and applied on top of the analytical calibration. We achieved 209 ps for the wide energy window and 198 ps for a narrow selection around the photopeak (411-561 keV). To maintain the detector's sensitivity, no filters were applied to the data during processing. CONCLUSION: Overall, the semi-monolithic detector provides attractive performance characteristics. Especially, a good CRT can be achieved while introducing DOI capabilities to the detector, making the concept suitable for clinical PET scanners.


Asunto(s)
Fotones , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Calibración , Conteo por Cintilación/métodos
18.
Nat Commun ; 13(1): 5711, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175413

RESUMEN

Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread clinical use. Here, we show that convolutional neural networks (CNNs) are highly susceptible to white- and black-box adversarial attacks in clinically relevant weakly-supervised classification tasks. Adversarially robust training and dual batch normalization (DBN) are possible mitigation strategies but require precise knowledge of the type of attack used in the inference. We demonstrate that vision transformers (ViTs) perform equally well compared to CNNs at baseline, but are orders of magnitude more robust to white- and black-box attacks. At a mechanistic level, we show that this is associated with a more robust latent representation of clinically relevant categories in ViTs compared to CNNs. Our results are in line with previous theoretical studies and provide empirical evidence that ViTs are robust learners in computational pathology. This implies that large-scale rollout of AI models in computational pathology should rely on ViTs rather than CNN-based classifiers to provide inherent protection against perturbation of the input data, especially adversarial attacks.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Suministros de Energía Eléctrica , Conocimiento , Flujo de Trabajo
20.
Rofo ; 194(7): 728-736, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35545101

RESUMEN

BACKGROUND: Therapeutics that specifically address biological processes often require a much finer selection of patients and subclassification of diseases. Thus, diagnostic procedures must describe the diseases in sufficient detail to allow selection of appropriate therapy and to sensitively track therapy response. Anatomical features are often not sufficient for this purpose and there is a need to image molecular and pathophysiological processes. METHOD: Two imaging strategies can be pursued: molecular imaging attempts to image a few biomarkers that play key roles in pathological processes. Alternatively, patterns describing a biological process can be identified from the synopsis of multiple (non-specific) imaging markers, possibly in combination with omics and other clinical findings. Here, AI-based methods are increasingly being used. RESULTS: Both strategies of evidence-based therapy management are explained in this review article and examples and clinical successes are presented. In this context, reviews of clinically approved molecular diagnostics and decision support systems are listed. Furthermore, since reliable, representative, and sufficiently large datasets are further important prerequisites for AI-assisted multiparametric analyses, concepts are presented to make data available in a structured way, e. g., using Generative Adversarial Networks to complement databases with virtual cases and to build completely anonymous reference databases. CONCLUSION: Molecular imaging and computer-assisted cluster analysis of diagnostic data are complementary methods to describe pathophysiological processes. Both methods have the potential to improve (evidence-based) the future management of therapies, partly on their own but also in combined approaches. KEY POINTS: · Molecular imaging and radiomics provide valuable complementary disease biomarkers.. · Data-driven, model-based, and hybrid model-based integrated diagnostics advance precision medicine.. · Synthetic data generation may become essential in the development process of future AI methods.. CITATION FORMAT: · Kiessling F, Schulz V, . Perspectives of Evidence-Based Therapy Management. Fortschr Röntgenstr 2022; 194: 728 - 736.


Asunto(s)
Imagen Molecular , Medicina de Precisión , Biomarcadores , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...